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Abstract

Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption,
distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug
design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural
networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property
prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14
phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning
and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In
addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints
on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was
competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and
discovering better molecules with desired functions or properties.
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Introduction
Accurate predicting molecular properties, including physico-
chemical and bioactive properties, as well as ADME/T (absorption,
distribution, metabolism, excretion and toxicity) properties, plays
a key role in molecular design, especially in drug design and
discovery. Quantitative structure–activity (property) relationship
(QSAR/QSPR) modeling represents one of the most widely used
and well-established computational approach for molecular
properties prediction [1, 2]. QSAR/QSPR models are constructed
using an empirical, linear or nonlinear function that estimates an
activity/property based on a chemical structure, followed by the
application of those models to predict and design novel molecules
with desired functional properties [3, 4].

Typically, machine learning (ML)-based QSAR/QSPR models
have relied heavily on appropriate molecular representations [5].
Currently, molecular representations can be divided into three
main categories, including molecular descriptors, fingerprints
and graphs. Molecular descriptors and fingerprints were derived
from human expert domain knowledge for the comprehensive
presentation of the constitutional, physicochemical, topological
and structural features of molecules [6–8]. Molecular descriptors
and fingerprints can be used as inputs for both conventional ML
(e.g. Naive Bayes (NB) [9], Support Vector Machine (SVM) [10],
Random Forest (RF) [11], eXtreme Gradient Boosting (XGBoost)

[12]) and deep learning (e.g. deep neural networks) algorithms
for QSAR/QSPR modeling tasks. However, molecular descriptor-
based models suffer from one major challenge in the era of
big data: how to select the most important descriptors (called
handcrafted descriptors) related to a property of interest from a
large number of predefined and calculable molecular descriptors
[13]. This step is not only significant for the performance accuracy
of the model, but is also directly related to the interpretability
of the model. Recently, the emergence of deep learning (DL)
approaches enables the elimination of tiresome expert and
domain-wise feature constructions by delegating this task to a
neural network that can extract the most valuable traits of the
raw input data that are required to model the problem at hand [14,
15]. In contrast, for graph-based molecular representations, the
atoms and bonds of a molecule are regarded as nodes and edges,
and the aggregated node features are used by DL architectures,
such as the Graph Convolutional Network (GCN) [16], Graph
Attention Network (GAT) [17], Attentive FP [18], Message Passing
Neural Network (MPNN) [19] and Directed MPNN (D-MPNN)
[20] for chemical learning tasks. Graph-based DL architectures
have become popular and have been successfully employed in
molecular property prediction tasks [21–26].

Although graph-based DL architectures are reported to yield
state-of-the-art performance for molecular properties prediction
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tasks, whether graph-based DL models are better than conven-
tional descriptors-based ML models for molecular properties
learning tasks remains controversial. The majority of previous
studies claimed that graph-based DL models were comparable
or superior to conventional descriptors- or fingerprints-based
ML models [20, 27, 28], while only few studies presented
the opposite conclusion [29, 30]. For example, in 2021, Jiang
et al. [30] demonstrated that the conventional descriptor-based
models (especially RF and XGBoost methods) outperformed the
graph-based DL models in terms of prediction accuracy and
computational efficiency. Another recent study by Stepisnik and
coworkers also reported a similar conclusion [31]. Currently,
graph-based DL models still suffer from the potential limitation
for insufficient modeling datasets, as it may be difficult for
the automatic learning mechanism characteristics of graph
neural networks (GNN) to learn robust graph representations
from insufficient datasets [32]. In 2020, Rifaioglu et al. [28]
discovered that graph- and fingerprint-based classifiers exhibited
opposite trends when predicting the attributes of protein families.
We hypothesize that the information captured by graphs or
fingerprints is different, and may be complementary. Thus, the
significant local chemical information contained in fingerprints
may assist models to achieve superior results.

In this study, we introduce a new DL neural network archi-
tecture using graph neural networks with fingerprints informa-
tion, called FP-GNN (Figure 1), for molecular properties prediction.
FP-GNN first operates over a hybrid molecular representation
that combines molecular graphs and molecular fingerprints. It
not only learns to characterize the local atomic environment
by propagating node information from nearby nodes to more
distant nodes using the attention mechanism in a task-specific
encoding, but also provides strong prior using fixed and comple-
mentary molecular fingerprints. We evaluated the FP-GNN model
against 13 commonly used public benchmark datasets, LIT-PCBA
datasets and 14 phenotypic screening datasets for breast cell
lines. Compared to all baseline models, FP-GNN achieved com-
parable or superior performance on these datasets, illustrating
its strong out-of-the-box and state-of-the-art performance when
modeling a broad range of molecular properties. Anti-noise ability
testing of FP-GNN also revealed its superiority over the Atten-
tive FP, XGBoost and HRGCN+ models, while maintaining high
predictive power. In addition, FP-GNN showed interpretability
on both graph-based networks and fingerprint-based networks,
which may help chemists capture important fragments in design-
ing new molecules/drugs.

Materials and methods
Graph neural networks with attention
mechanism
Molecules are natural graph-structured data and we therefore
choose the spatial-GNN [33] to compute the information from
molecular graphs. Before the data were inputted into the GNN
model, we transformed each molecule into an undirected graph
G(V, E), where V = {x1, x2, . . . , xn} is the node set representing
atoms and E is the edge set representing chemical bonds. The
spatial-GNN updates each node by aggregating the information
of itself and neighbors according to

h′
i = Aggregate1

⎛
⎝hi,

∑
j∈N(i)

hj

⎞
⎠ (1)

where hi is the vector of node i and N(i) means the neighbors of i.
Finally, the model aggregates the total graph to the output

according to

H = Aggregate2

(∑
i∈G

h′
i

)
(2)

As shown in Figure 1A, we used the attention mechanism [17]
to update the node message. The graph attention mechanism pays
attention to the effect of neighbors and computes the attention
from node j to node i according to

eij = LeakyRelu
(
a ·

[
W1hi

∥∥∥W1hj

])
(3)

where hi ∈ Rl, W1 ∈ Rl;×l, a ∈ R1×2l′ and ‖ indicates the con-
catenation operation. The attentions of all neighbors were then
normalized according to

αij = softmax
(
eij

) = exp
(
eij

)
∑

k∈N(j) exp (eik)
(4)

Attentions were used as weights to update node i as follows:

h′
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⎛
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⎞
⎠ (5)

where h′
i ∈ Rl′ . We then computed attentions many times and

calculated the mean as the final attention:
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After updating all nodes, the output of the complete molecular
graph was the mean of them:

H =
(

1
N

N∑
i=1

h′
i

)
(7)

Initial molecule featurization
Similar to other graph-based methods [18, 20], we used the prop-
erties of molecules to initialize the nodes of the molecular graphs
before the data were imported into the GNN model. The atomic
features are given in Supplementary Table 1.

Molecular fingerprints
Molecular fingerprints are roughly divided into substructure
key-based fingerprints, topological or path-based fingerprints
and circular fingerprints [34]. Three complementary fingerprints
(MACCS fingerprint [35], Pharmacophore ErG fingerprint [36] and
PubChem fingerprint [37] were used in the FP-GNN model because
they can complement and holographically express molecular
characteristics [38]. The three fingerprints are described as
follows:

MACCS fingerprint: a substructure key-based fingerprint using
SMARTS pattern. MACCS contains most atomic properties, bond
properties and atomic neighborhoods at diverse topological sep-
arations, which are meaningful for drug discovery. We choose the
short variant of 1 + 166 bits for this study.
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Figure 1. The Architecture of FP-GNN. (A) The graph attention network calculates attentions between each node and its neighbors, and then updates the
node with those relative attentions. (B) The FP-GNN model combines the information from the molecular graphs and fingerprints to predict molecular
properties.

PubChem fingerprint: a substructure key-based fingerprint of
881 bits with extensive coverage of chemical structures.

Pharmacophore ErG fingerprint: a 2D pharmacophore finger-
print using an extended reduce graph (ErG) method and apply-
ing pharmacophore-type node descriptions to encode molecular
properties.

FP-GNN network architecture
As shown in Figure 1B, the FP-GNN architecture first combined
the molecular graph and three complementary molecular finger-
prints into the flexible and dynamic neural network. The simpli-
fied molecular input line entry system (SMILES) notation of the
molecule was inputted to two paths of the FP-GNN architecture.

On one path, three complementary fingerprints (MACCS finger-
print, PubChem fingerprint and Pharmacophore ErG fingerprint),
termed the mixed fingerprints, were concatenated according to

FP = (
FPPubChem ‖ FPMACCS ‖ FPPharmacophore ErG

)
(8)

The fingerprints vector was inputted into the artificial neural
network (ANN) to obtain the following representation (Equation
9):

V′ = W2 · FP + b (9)

On the other path, the GNN model was used to capture the
information of the molecular graph. The node representation
was aggregated from itself and its neighbors by the attention
mechanism. Finally, the average of all nodes was produced as the
output to represent the molecular graph.

The outcomes received from the two paths were then fitted
together and imported into fully connected layers to produce the
ultimate output.

Hyperparameter optimization and training
protocol
In this study, the Hyperopt Python package [39] was employed
to conduct Bayesian optimization of hyperparameters. Six hyper-
parameters are chosen: the dropout rate of GNN, the number of
multi-head attentions, the hidden size of attentions, the hidden
size and dropout rate of the fingerprint networks (FPN), and the
ratio of GNN in FP-GNN. FP-GNN uses dropout mechanism in both
FPN and GNN to avoid overfitting during training. Meanwhile, FP-
GNN can split datasets into three parts (training set, validation set
and test set) and then utilize validation set to determine the final
model for the better generalization ability.

FP-GNN was developed by the Pytorch framework. All FP-GNN
models were trained on the SCUTGrid (SCUT supercomputing
platform), which uses Matrox MGA G200e.

Benchmark datasets and performance evaluation
metric
The performances of the FP-GNN models were extensively eval-
uated using three benchmark datasets. First, 13 commonly used
public datasets (Supplementary Table 2) relevant to drug discov-
ery were used to test the performance of FP-GNN, including three
physicochemical datasets (ESOL [40], FreeSolv [41] and Lipophilic-
ity [42]), 6 bioactivity and biophysics datasets (MUV [43], HIV
[44], BACE [45], PDBbind-C, PDBbind-R and PDBbind-F [46]), and 4
physiology and toxicity datasets (BBBP [47], Tox21 [48], SIDER [49]
and ClinTox [50, 51]). Second, LIT-PCBA [52], a recently developed
unbiased and realistic dataset that consists of 15 targets and
7844 confirmed active and 407 381 confirmed inactive compounds
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(Supplementary Table 4), was used to evaluate the performance of
FP-GNN. Finally, 14 phenotypic screening datasets for breast cell
lines (Table 2) were also employed to assess the predictive power
of FP-GNN [53].

The regression tasks were evaluated by root-mean-square error
(RMSE), while the classification tasks were evaluated by the area
under the receiver operating characteristic curve (ROC-AUC) or
the area under the precision recall curve (PRC-AUC).

Results and discussion
Performance of the FP-GNN network architecture
on the public benchmark datasets
The 13 benchmark datasets related to drug discovery from Wu
et al. [27] were used to evaluate the predictive power of the FP-
GNN models. As shown in Supplementary Table 2, the bench-
mark datasets encompassed three categories: physicochemical,
bioactivity and biophysics, and physiology and toxicity. The sizes
of the datasets varied widely and included small datasets (e.g.
PDBbind-C only contains 168 molecules) and large datasets (e.g.
MUV datasets containing 17 learning tasks and consisting of 93
087 molecules). For multi-task datasets, the average performance
metric of each model was calculated to represent the final perfor-
mance. ROC-AUC was used as the evaluation metric for all classi-
fication tasks, except the MUV datasets. Since the ratio of actives
to inactives in the MUV datasets was highly imbalanced, the PRC-
AUC was used to evaluate the performance of the classification
models based on the MUV datasets, which could better reflect
the performance of classification models on imbalanced datasets
than ROC-AUC. Regression models were evaluated using RMSE. To
fairly compare the published performance of the advanced graph-
based DL models (MoleculeNet [27], D-MPNN (Chemprop) [20],
Attentive FP [18] and HRGCN+ [54]) and the advanced descriptors-
based XGBoost [12] models on the public datasets, the same data-
split code was adopted to randomly split each dataset into the
training set, the validation set and the test set, with a ratio of 8:1:1.
In addition, BACE, BBBP and HIV datasets were split at the same
ratio based on molecular scaffolds. To reduce the occasionality
in data splitting and to ensure the reliability of the results, we
evaluated FP-GNN models based on 10 different random seeds
and computed the average values of evaluation metrics as the
final result. All results were counted after hyperparameter opti-
mization.

The active compounds from the bioactivity and biophysics
(Supplementary Table 2) datasets were measured based on their
binding affinities for different biological targets. There is no
doubt that accurately predicting the biological activities of small
molecules for a given target can accelerate the discovery and
development of new drug candidates. There was a total of eight
learning tasks for this type of dataset (Supplementary Table 2),
including four classification tasks based random- and scaffold-
splitting methods for the HIV and BACE bioactivity datasets,
one classification task based on the random-splitting method
for the MUV bioactive dataset, and three regression tasks based
random-splitting method for three biophysical datasets (PDBbind-
C, PDBbind-R and PDBbind-F). As shown in Table 1, FP-GNN
performed best on three of the eight learning tasks, including
the two classification learning tasks based on the scaffold-
splitting of BACE and HIV, and one regression task of PDBbind-C.
Chemprop achieved the four best performance tasks, including
one classification task based on the random-splitting of BACE
and HIV, and two regression tasks of PDBbind-F and PDBbind-R.
Graph-based weave models from MoleculeNet performed best

on the MUV dataset that contains 17 subtasks. Notably, FP-GNN
achieved the second-best performance on the random-splitting
of HIV, MUV, PDBbind-F and PDBbind-R. Although FP-GNN did not
perform the best on some datasets, our model still performed
comparatively well on those datasets.

Molecules from physiology and toxicity datasets record their
effects on living bodies, such as the blood–brain barrier penetra-
tion dataset (BBBP), the side effect resource dataset (SIDER) and
toxicities dataset (Tox21 and ClinTox). Thus, those datasets are
closely related to the physiology and toxicity properties of drugs.
Precisely predicting the physiological and toxicological properties
of compounds can rule out improper molecules in the early
stages of drug discovery, which is beneficial for reducing the
cost reduction of new drug development. However, it remains
challenging to predict physiological and toxicological properties
accurately. As shown in Table 1, FP-GNN achieved the three best
classification performance results on the BBBP (from random- and
scaffold-splitting methods) and SIDER datasets, while Chemprop
performed best on Tox21 and XGBoost performed best on ClinTox.
FP-GNN also exhibited better performance than the Weave mod-
els of MoleculeNet on the ClinTox dataset.

The physicochemical properties of a given drug can reflect
its pharmacokinetic phases in the body. The physicochemical
properties of molecules play a key role in the development of
candidate drugs. Therefore, the accurate prediction of the physic-
ochemical properties of molecules facilitates drug discovery and
development. FreeSolv, ESOL and Lipophilicity datasets were used
to evaluate the predictive ability of the FP-GNN network archi-
tecture for physicochemical properties. Table 1 illustrates that FP-
GNN performed best on the FreeSolv dataset, HRGCN+ performed
best on the ESOL dataset and Attentive FP performed best on
the Lipophilicity dataset. Although FP-GNN performed worse than
Attentive FP on the Lipophilicity dataset, it outperformed the
other graph-based DL methods (e.g. GCN, MPNN and Weave) in
MoleculeNet.

The ultimate goal of building molecular property prediction
models is to predict the properties of new molecules with novel
scaffolds, to make them fall within the appropriate ranges of
the desired properties. Consequently, the scaffold-based splitting
method was used on the BACE, BBBP and HIV datasets to ensure
that the scaffolds in the training set, validation set and test set
were as distinct as possible. As shown in Table 1, the performance
of scaffold-splitting classification models was lower than that
of models based on random-splitting. Those data suggest that
the scaffold-based splitting method was more challenging for
learning tasks. Our FP-GNN models performed best on all three
datasets using scaffold-based splitting and showed the same out-
standing performance as the random-splitting method. All such
results demonstrate that FP-GNN is stable in predicting molecules
with new scaffolds.

Typically, DL models perform moderately on small datasets
because insufficient samples could not provide adequate infor-
mation. FP-GNN model aims to complement the information
captured automatically from molecular graphs by using prior
information from molecular fingerprints. As shown in Table 1
and Table S2, FP-GNN performed best on PDBbind-C and FreeSolv
datasets with less than 1000 molecules, indicating that FP-GNN is
also competitive on the datasets without enough samples.

Out of 16 learning tasks from 13 public benchmark datasets
(Table 1), FP-GNN showed the best performance on seven tasks,
while Chemprop exhibited the best performance on five tasks.
MoleculeNet, Attentive FP, HRGCN+ and XGBoost performed best
on one task each. Supplementary Table 3 summarizes how our
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Table 1. Predictive performance results of FP-GNN on 13 commonly used public datasets

Dataset Split type Metric MoleculeNet
(Graph) [27]

Chemprop
(optimized)
[20]

Attentive
FP [54]

HRGCN+
[54]

XGBoost
[54]

FP-GNN

BACE Random ROC–AUC 0.898 0.876 0.891 0.889 0.881
Scaffold ROC–AUC 0.806

(Weave)
0.857 0.860

HIV Random ROC–AUC 0.827 0.822 0.824 0.816 0.825
Scaffold ROC–AUC 0.763 (GC) 0.794 0.824

MUV Random PRC–AUC 0.109
(Weave)

0.053 0.038 0.082 0.068 0.090

Tox21 Random ROC–AUC 0.829 (GC) 0.854 0.852 0.848 0.836 0.815
BBBP Random ROC–AUC 0.917 0.887 0.926 0.926 0.935

Scaffold ROC–AUC 0.690 (GC) 0.886 0.916
ClinTox Random ROC–AUC 0.832

(Weave)
0.897 0.904 0.899 0.911 0.840

SIDER Random ROC–AUC 0.638 (GC) 0.658 0.623 0.641 0.642 0.661
PDBbind-C Random RMSE 1.910 1.876
PDBbind-F Random RMSE 1.286 1.296
PDBbind-R Random RMSE 1.338 1.349
FreeSolv Random RMSE 1.150 (MPNN) 1.009 1.091 0.926 1.025 0.905
ESOL Random RMSE 0.580 (MPNN) 0.587 0.587 0.563 0.582 0.675
Lipophilicity Random RMSE 0.655 (GC) 0.563 0.553 0.603 0.574 0.625

Each dataset was split into training, validation and test sets using the corresponding data-split codes from published studies. The FP-GNN models used the
same dataset and data split method to fairly compare the MoleculeNet, Chemprop, Attentive FP, HRGCN+ and XGBoost models. Bold font illustrates the models
that outperformed all other models. The best graph-based models from MoleculeNet were used, the optimized results of the Chemprop models were from the
original study [20], and the best performance results for the Attentive FP, HRGCN+ and XGBoost models were chosen from Wu et al. [54]. MPNN: message passing
neural networks; GC: graph convolutional models and Weave: Weave models.

FP-GNN compared to each of the baseline models, including
four commonly used advanced graph-based DL methods and the
venerable descriptors-based ML method, XGBoost. Our FP-GNN
model consistently matches or outperforms not only for each
baseline individually (Supplementary Table 3), but also across all
baselines (Table 1), indicating that coupling molecular graphs and
fingerprints can improve the degree of generalization of graph-
based DL algorithms to predict molecular properties better. The
outstanding performance of FP-GNN on drug discovery-related
datasets makes FP-GNN one of the most competitive DL methods
in drug discovery practice.

Performance of the FP-GNN network architecture
on an unbiased and realistic LIT-PCBA dataset
In 2020, Viet-Khoa Tran-Nguyen et al. [52] designed an unbiased
and realistic dataset called LIT-PCBA, specifically dedicated to
ML and virtual screening methods. LIT-PCBA consists of 7844
confirmed active and 407 381 confirmed inactive compounds
toward 15 targets, which were collected from the PubChem BioAs-
say (PCBA) dataset [55]. For each target, unbiased training and
validation sets were constructed using the asymmetric validation
embedding method at the ratio of 3:1. The details of LIT-PCBA
dataset are summarized in Supplementary Table 4. We therefore
used this dataset to evaluate the predictive power of FP-GNN. Five
fingerprint-based methods [56] (NB, SVM, RF, XGBoost and DNN)
and two graph-based methods (GCN and GAT) were selected as the
baseline models. All fingerprint-based models were constructed
based on the Morgan fingerprint [57] and the mixed fingerprints
(MACCS FP, PubChem FP and Pharmacophore ErG FP). According
to the original paper and Jiang et al. [56], ROC-AUC was used to
evaluate the performance of the classification models for the
LITPCBA dataset.

As shown in Figure 2A, when compared to five Morgan
fingerprint-based models and two graph-based models, FP-GNN

exhibited the best performance on six targets (ADRB2, ALDH1,
ESR1_ago, MAPK1, PPARG and TP53). Meanwhile, NB achieved
the best performance on two targets (IDH1 and VDR); DNN
achieved the best performance on two targets (FEN1 and OPRK1);
GCN performed best on two targets (ESR1_ant and MTORC1);
SVM, XGBoost and GAT achieved the best performance on
one task each (PKM2, GBA and KAT2A, respectively). More
importantly, FP-GNN performed the best on average, with the
highest average AUC value of 0.739. Compared to the mixed
fingerprints-based models, FP-GNN also showed a similar
outstanding performance (Figure 2B). The details of the direct
comparisons between the FP-GNN model and each of the baseline
models are listed in Supplementary Table 5. It is clear that not
only did our FP-GNN models outperform the fingerprint-based
models but also exhibited comparable or superior performance
to the two classical graph-based DL models (GCN and GAT).
Even on the most challenging LIT-PCBA dataset, FP-GNN also
exhibited strong competitiveness and can be used to accurately
predict the biological activity of molecules for drug discovery
campaigns.

Performance of FP-GNN compared to the
advanced graph-based and fingerprint-based
models on cell-based phenotypic screening
datasets
Phenotypic-based screening (e.g. whole-cell activity), an original
but indispensable drug screening method, has regained attention
in recent years [58–62]. The phenotypic screening datasets
(Table 2) for 13 breast cancer cell lines and 1 normal breast
cell line were used to evaluate the performance of FP-GNN.
Recently, He et al. [53] reported four graph-based DL models and
one advanced fingerprint-based XGBoost model to predict the
activities of molecules against those cell lines. Therefore, FP-GNN
models were developed on the 14 cell-based phenotypic screening
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Figure 2. Performance of FP-GNN compared to the baseline models on the LIT-PCBA dataset. (A) The NB, SVM, RF, XGBoost and DNN models were
established using the Morgan fingerprint as the molecular representation. (B) The NB, SVM, RF, XGBoost and DNN models were established using the
mixed fingerprints (MACCS fingerprint, PubChem fingerprint and Pharmacophore ErG fingerprint) as the molecular representation. The performances
of models based on the Morgan fingerprint were collected from Jiang et al. [56]. Three graph-based models (GCN, GAT and FP-GNN) as well as models
based on the mixed fingerprint were constructed using the same benchmark.

datasets and compared to the performances published for the five
models.

As shown in Table 2, FP-GNN performed best on 8 out of 14
cell lines (i.e. MDA-MB-453, SK-BR-3, T-47D, MCF-7, BT-474, BT-
20, BT-549 and HBL-100), while Attentive FP achieved the best
performance on three cell lines (HS-578 T, MDA-MB-231 and

Bcap37), XGBoost achieved the best performance on two cell
lines (MDA-MB-361 and MDA-MB-468), and GCN performed best
on MDA-MB-435. Notably, our FP-GNN models were the second-
best in HS-578 T, MDA-MB-231 and MDA-MB-468 datasets. Impor-
tantly, FP-GNN achieved the overall best performance on these 14
cell lines, with the highest average AUC value of 0.849. FP-GNN
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Table 2. Performance of FP-GNN on 14 breast cell line datasets compared to the graph-based DL models

Cell lines Classification Compounds Task metric Attentive FP [53] GAT [53] GCN [53] MPNN [53] XGBoost [53] FP-GNN

MDA-MB-453 HER-2+a 440 ROC–AUC 0.872 0.812 0.866 0.715 0.810 0.886
SK-BR-3 HER-2+ 2026 ROC–AUC 0.805 0.840 0.839 0.760 0.848 0.852
MDA-MB-435 HER-2+ 3030 ROC–AUC 0.824 0.830 0.858 0.749 0.853 0.820
T-47D Luminal Ab 3135 ROC–AUC 0.812 0.763 0.819 0.751 0.821 0.846
MCF-7 Luminal A 29 378 ROC–AUC 0.845 0.800 0.833 0.843 0.826 0.866
MDA-MB-361 Luminal Bc 367 ROC–AUC 0.938 0.896 0.955 0.972 0.976 0.905
BT-474 Luminal B 811 ROC–AUC 0.787 0.657 0.866 0.847 0.827 0.868
BT-20 TNBCd 292 ROC–AUC 0.735 0.721 0.740 0.784 0.740 0.887
BT-549 TNBC 1182 ROC–AUC 0.630 0.710 0.669 0.634 0.651 0.807
HS-578 T TNBC 469 ROC–AUC 0.830 0.758 0.636 0.665 0.753 0.770
MDA-MB-231 TNBC 11 202 ROC–AUC 0.870 0.770 0.859 0.850 0.865 0.866
MDA-MB-468 TNBC 1986 ROC–AUC 0.875 0.875 0.887 0.858 0.896 0.888
Bcap37 TNBC 275 ROC–AUC 0.858 0.767 0.693 0.807 0.744 0.779
HBL-100 Normal cell line 316 ROC–AUC 0.645 0.641 0.658 0.701 0.776 0.850
Average 0.809 0.774 0.798 0.781 0.813 0.849

aHER-2+: HER2-positive breast cancers. bLuminal A: Luminal A breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor
positive), HER2-negative, with low levels of the protein Ki-67. cLuminal B: Luminal B breast cancer is hormone-receptor positive (estrogen-receptor and/or
progesterone-receptor positive), HER2 positive or HER2 negative, with high levels of Ki-67. dTNBC: triple-negative breast cancer. Each dataset was split into
training, validation and test sets using the corresponding data-split codes from He et al. [53]. The FP-GNN models used the same dataset and data split method
to fairly compare the Attentive FP, GAT, GCN, MPNN and XGBoost models. Bold font illustrates the models that outperformed all other models. MPNN: message
passing neural networks; GCN: graph convolutional networks; GAT: graph attention network.

exhibited excellent performance on the cell-based phenotypic
screening datasets, suggesting that FP-GNN holds great potential
for phenotype-based drug discovery.

The ablation experiment of FP-GNN
We investigated whether the information of local neighbors and
global structures learned from the molecular graphs, and the
chemical substructure information learned from the molecular
fingerprints could complement each other and assist in optimiz-
ing our FP-GNN model.

To analyze the influence of the graph-based module and
fingerprint-based module in the FP-GNN model, we counted
the ratios of GNN in FP-GNN (Figure 3) based on the optimal
set of hyperparameters for each of the 13 public datasets
(Supplementary Table 6). As shown in Figure 3, more than half
(54.3%) of the ratios of GNN in FP-GNN fell between 0.4 and
0.6, illustrating that the contributions of the two modules to
the FP-GNN model were relatively balanced. In addition, pure
GNN and pure FPN only accounted for approximately 4.3% of all
models, demonstrating that coupling complementary molecular
graph and fingerprint strategy to dynamic GNN can improve the
performance of molecular property prediction.

The ablation experiment of FP-GNN was conducted on the
unbiased and realistic LIT-PCBA dataset. The whole FP-GNN
model for each target was split into FPN and GNN models
with the original hyperparameters. FP-GNN also used the same
hyperparameters except that the ratio of GNN in FP-GNN modules
was set to 0.5. As shown in Figure 4, FP-GNN models outperformed
FPN and GNN in 10 out of 15 targets. FP-GNN models performed
medium, with slightly lower performance than GNN, but evidently
higher than FPN models on the other five targets (ESR1_ago,
FEN1, KAT2A, MTORC1 and OPRK1). These results illustrated
that FP-GNN combines the advantages of FPN and GNN to
capture the complementary information of molecular graphs
and fingerprints to achieve better performance. A possible reason
for this finding was that we used the default parameter 0.5 as
the ratio of GNN in FP-GNN modules when building the FP-GNN
model, and less information was captured from the unfavorable
GNN or FPN module to influence the performance of FP-GNN

Figure 3. Distribution of the ratios of GNN in the FP-GNN models on the
13 public datasets. The details of optimal sets of hypermeters for the 13
public datasets are shown in Supplementary Table S6.

on the five targets. Collectively, combing molecular graphs and
fingerprints can obtain local neighbor and complete structural
information from the molecular graphs and substructures, as well
as pharmacophore information from the molecular fingerprints,
which will enable more accurate predictions of molecular
properties.

The influence of different types of fingerprints
We explored the influence of different molecular fingerprints
on the performance of our FP-GNN architecture. The Morgan
fingerprint is the most common fingerprint used in QSAR/QSPR
modeling [58, 63–67]. In addition to the mixture of three comple-
mentary fingerprints, we grafted the 1024-bits ECFP-4 fingerprint
[68] (called Morgan fingerprint in the RDKit) into FP-GNN archi-
tecture and then tested it on public datasets.

As shown in Figure 5, FP-GNN models based on the mixed
fingerprints performed better than the FP-GNN models based on
the Morgan fingerprint, regardless of whether the analyses were
performed on classification datasets (Figure 5A) or regression
datasets (Figure 5B). In addition, we retrospect the performances

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac408/6702671 by Shanghai Jiao Tong U

niversity user on 15 O
ctober 2022



8 | Cai et al.

Figure 4. Results of the ablation study on the LIT-PCBA dataset.

of four classical ML methods (i.e. RF, SVM, NB and XGBoost) and
one DNN DL method using the mixed fingerprints and the Morgan
fingerprint on the LIT-PCBA dataset. As shown in Figure 2, by
counting the number of best-prediction models based on the
mixed fingerprints and the number of best models based on
the Morgan fingerprint, it was seen that the former did not
exhibit absolute superiority (42 versus 30, and the three results
are equal). Furthermore, when comparing the performance of
the Morgan fingerprint-based models and the mixed fingerprint-
based models, there is a trend that simple NB and SVM methods
can achieve more information from Morgan fingerprint, while
advanced algorithms (RF, XGBoost and DNN) can capture more
information from the mixed fingerprints. Meanwhile, the FP-GNN
based on the mixed fingerprints exhibited better performance
than FP-GNN based on the Morgan fingerprint (Figure 5). Thus,
those data indicated that compared to the commonly used Mor-
gan fingerprint, coupling the mixed fingerprints and molecular
graph could achieve optimal complementarity to exhibit better
performance.

The above-mentioned differences in complementarity may be
related to the specific generation algorithms of fingerprints. The
mixed fingerprints recorded most of the atomic and bond prop-
erties (MACCS fingerprint), extensive chemical structures and
substructures (PubChem fingerprint) and pharmacophore feature
(Pharmacophore ErG fingerprint) information, which may not be
included in the features of molecular graphs. However, the Morgan
fingerprint only records the local environmental information of
atoms, which may be similar to the molecular graph features.
Therefore, unlike the Morgan fingerprint, the mixed fingerprints
can better complement the molecular graph features, and elicit
better molecular representations.

The anti-noise ability of FP-GNN
DL models place extensive demands on data quality and generally
require a large quantity of correct data. Obtaining sufficient high-
quality data is still the central challenge in computer-assisted

drug discovery [32]. Actually, the available data used in drug
discovery practices are usually scarce and of mediocre quality.
When the model is used in real-world scenes, the noises in the
data will affect the training process and reduce the practicality of
the model. Therefore, we ran FP-GNN on the noisy data to test its
anti-noise ability.

We divided the HIV dataset (41 127 compounds) at a ratio of
8:1:1 to generate the training set, validation set and test set. We
ensured that the labels in the test set remained unchanged, and
then changed the labels in the training set and validation set
according to a predetermined ratio to generate noise artificially.
The anti-noise ability of FP-GNN was compared with two DL
methods (Attentive FP and HRGCN+) and one advanced method
(XGBoost) from Wu et al. [54]. The same data, data split, evaluation
metric and noise rates were also adopted from Wu et al. to ensure
a fair comparison. Figure 6 indicates that FP-GNN achieved the
state-of-the-art performance in the anti-noise tests. Based on the
excellent anti-noise ability of our FP-GNN model, it is foreseeable
that it can handle poor data situations in real drug discovery
scenarios.

The interpretation of FP-GNN
The FP-GNN model based on the BBBP dataset containing the
blood–brain barrier (BBB) permeability of molecules was used to
analyze the interpretability of the model. Since the BBB can block
most drugs and hormones, it is essential to accurately predict
the BBB permeability of molecules for the development of drugs
targeting central nervous system diseases. Facing the natural
BBB that exists in the human body, hydrophobic molecules (low
polarity and high ClogP) could bypass the BBB easily, while the
converse is true for hydrophilic molecules.

The FP-GNN architecture can compute the attentions of adja-
cent atoms and then map the attentions to bonds connected to
atoms (Figure 1). For a given molecule, the attention coefficient
can be used to quantitatively characterize whether chemical frag-
ments contribute more to the prediction of molecular properties.
As shown in Figure 7, the portions of the molecule colored more
darkly were more significantly in predicting whether the molecule
can pass the BBB, while the role of the light-colored portions is
less important. Considering an active molecule as an example
(Figure 7A), most of the substructural groups of this compound
are hydrophobic, laying the foundation for penetrating the BBB.
The benzene ring (C7–C12, marked in red) of the molecule has the
least polarity and maximum contribution to BBB penetration. We
used ChemBioDraw (v.14.0.0.117) to further quantitatively ana-
lyze the ClogP values of these chemical fragments. Quantitative
analyses of ClogP showed that the chemical portion marked in red
had a lower polarity (ClogP = 2.142), while the gray mark portion
had a higher polarity (ClogP = 1.389). In fact, our FP-GNN model
paid great attention to the low-polarity benzene ring, which was
also consistent with the prediction results as an active molecule.
As shown in Figure 7B, for an inactive molecule, the dark portion
(marked in red) represents an exposed substituent amino group
that provides the majority of polarity to prevent the molecule
from passing the BBB. The ClogP value of the chemical fragment
in red is −0.905, while the ClogP of the fragment in gray is 0.934.
The lower ClogP indicates that the red portion of the molecule
was more hydrophilic and difficult to cross the BBB. The high
attention marked in the red part from our FP-GNN model was con-
sistent with the inactive prediction results. These cases not only
demonstrate that our FP-GNN model was interpretable, but also
hint the FP-GNN network architecture can learn the relationships
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Figure 5. Comparisons of the performance of FP-GNN models based on the Morgan, as well as models based on the mixed of three complementary
fingerprints. (A) The performance results for three classification datasets (BACE, BBBP and SIDER). (B) The performance results for four regression
datasets (Lipophilicity, PDBbind-C, PDBbind-F and PDBbind-R). To ensure the reliability of the results, after optimizing the hyperparameters, the average
metric value of the FP-GNN models based on 10 different random seeds was computed as the final result.

Figure 6. The anti-noise performances of Attentive FP, HRGCN+, XGBoost and FP-GNN models with different noise rates on the HIV dataset. The anti-
noise results for Attentive FP, HRGCN+ and XGBoost models were collected from Wu et al. [54].

Table 3. The 10 most significant bits of the mixed fingerprints on the prediction of the FreeSolv dataset

Rank Importance Mixed fingerprint bit Fingerprint Fingerprint bit Meaning

1 0.276 190 Pharmacophore ErG 23 (‘Donor’, ‘Acceptor’, 2)
2 0.226 189 Pharmacophore ErG 22 (‘Donor’, ‘Acceptor’, 1)
3 0.196 93 MACCS 93 OC(N)C
4 0.184 1048 PubChem 440 C–C–O=O
5 0.177 1060 PubChem 452 C–O=O
6 0.170 111 MACCS 111 NCO
7 0.165 140 MACCS 140 OH
8 0.162 1015 PubChem 407 OCP
9 0.158 276 Pharmacophore ErG 109 (‘Donor’, ‘Aromatic’, 4)
10 0.156 42 MACCS 42 C#N
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Figure 7. The importance of molecular structures during the prediction
process. The darker the color, the more important are for the structures.
Molecules were obtained from the BBBP (the blood–brain barrier penetra-
tion) dataset. (A) Molecule 1 is permeable, and the darker colored portion
has a higher ClogP, which indicates a stronger lipophilicity. (B) Molecule
2 is impermeable, and the darker colored portion has lower ClogP, which
means a weaker lipophilicity. The important portions that were captured
by FP-GNN models were consistent with the prediction results.

between molecular substructures (chemical fragments) and their
molecular properties.

Besides the GNN module, we analyzed the interpretation of the
FPN module. We chose the FreeSolv (Free Solvation) dataset that
contains the hydration free energy of small molecules in water.
The mixed fingerprints (MACCS fingerprint, PubChem fingerprint
and Pharmacophore ErG fingerprint) that we used in the FPN
model had 1489 bits in total. We changed the values of each bit
in order and then inputted the mixed fingerprints to the training
model. The effects made by different changing bits indicated the
importance of fingerprints in the model. The more a modified
value deviated from the original prediction, the more critical the
fingerprint bit was in predicting the free solvation of molecules.
The ten most significant bits are shown in Table 3. As shown in
Table 3, substructures represented by the 4th, 5th, 7th and 10th
bits had strong polarity and high water solubility, which play
essential roles in the free solvation of molecules. We calculated
the Pearson correlation coefficient between the hydration-free
energy of molecules and these 10 fingerprint bits. The Pearson
values of the 3rd, 6th and 10th bits were above 0.7, indicating
that they exhibited a strong correlation. Thus, it can be seen that
our model captured the significant part of fingerprints, and the
prediction results from the FP-GNN model can be explained. In the
top 10 crucial bits, there are four, three and three bits coming from
MACCS fingerprint, PubChem fingerprint and Pharmacophore
ErG fingerprint, respectively. Such results illustrated that three
fingerprints collectively played an important role in the FP-GNN
model.

Conclusions
In this study, we advanced a new DL architecture called FP-GNN,
which first couples the graph attention network based on a molec-
ular graph and the artificial neural network based on the mixed
molecular fingerprints to generate more comprehensive molec-
ular representations. The performance of FP-GNN on 13 classi-
cal public datasets revealed that FP-GNN model performed out-
standingly compared to four recently-published graph-based DL
algorithms (MoleculeNet, Chemprop, Attentive FP and HRGCN+)
and the venerable XGBoost algorithm. We also evaluated the
predictive power of FP-GNN on an unbiased and realistic LIT-
PCBA dataset and 14 phenotypic drug screening datasets related
to breast cancer cell lines. The evaluation outcomes further indi-
cated that our FP-GNN model was highly competitive. Analyses
of the influence of molecular graphs and fingerprints on the FP-
GNN model, as well as the results of ablation experiments found
that (1) molecular graphs and mixed molecular fingerprints in
the FP-GNN architecture contributed to improve model prediction
performance; and (2) embedding different fingerprints in the FP-
GNN architecture affected its predictive performance. In addition,
the excellent anti-noise ability of FP-GNN indicated that our FP-
GNN model could solve noisy (poor) data in the natural scenes
of drug discovery. Importantly, the FP-GNN model has intuitive
interpretability and can identify important chemical fragments
in a molecule, which can assist in designing and optimizing new
molecules with desired properties or functions.

Key Points

• We presented a deep learning (DL) architecture named
fingerprints and graph neural networks (FP-GNN) to pre-
dict molecular properties.

• Extensive experimental results showed that FP-GNN was
highly competitive compared to classic machine learn-
ing methods and state-of-the-art DL methods.

• The ablation experiments of FP-GNN indicated that
information from molecular graphs and molecular fin-
gerprints is complementary to improve the predictive
power of molecular properties.

• The intuitive interpretability of the FP-GNN model
can provide important chemical fragments to assist
chemists and pharmacists in designing or optimizing
new molecules with desired properties.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.

Data and Code Availability
The full datasets and the source codes for FP-GNN are freely
available on GitHub at https://github.com/idrugLab/FP-GNN.
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